Jscheme Web Programming in a CS0 Curriculum

Timothy J. Hickey !
Department of Computer Science

Brandeis University
Waltham, MA 02254 //USA

Abstract

We describe an approach to introducing non-science ma-
jors to Computer Science by teaching them to write ap-
plets, servlets, and webapps using a dialect of Scheme
implemented in Java.

1 Introduction

There are two general approaches to teaching a CSO
class. The most common approach is a broad overview
of Computer Science including hardware, software, his-
tory, ethics, and an exposure to industry standard office
and internet software. On the other end of the spectrum
is the CSO0 class that focusses on programming in some
particular general purpose language, (e.g. Javascript
[6], Scheme[4], MiniJava[5]).

The primary disadvantage of the breadth-first approach
is that it tends to offer a superficial view of computing.
The depth-first programming approach on the other
hand often requires a substantial effort just to learn the
syntax of the language and the semantics of the under-
lying abstract model of computation, leaving little time
to look at other aspects of computing such as internet
technology or computer architecture.

Several authors have recently proposed merging these
two approaches by using a simpler programming lan-
guage (e.g. Scheme[4]) or by using an internet-
based programming language (e.g. Javascript[6],
MiniJava[5]). In this paper we describe a five year ex-
periment in combining these two approaches using a
small (but powerful) subset of Jscheme[2] a Java-based

This work was supported by the National Science Foun-
dation under Grant No. ETA-0082393.

dialect of Scheme. The tight integration of Java with
Jscheme allows it to be easily embedded in Java pro-
grams and hence makes it easy for students to imple-
ment servlets, applets, and other web-deliverable appli-
cations.

Jscheme is an implementation of Scheme in Java (meet-
ing almost all of the requirements of the [3] Scheme
standard). It also includes a simple syntactic exten-
sion providing full access to Java classes, methods, and
fields, as well as a syntactic extension which simplifies
the process of generating HTML.

Jscheme can be accessed as an interpreter applet (run-
ning on all Java-enabled browsers) or as a Java Network
Launching Protocol (JNLP) application. Both of these
provide one click access to the Jscheme IDE from stan-
dard browsers.

Jscheme has also been build into a Jakarta Tomcat
webserver as a webapp which allows students to write
servlets and JNLP applications directly in Jscheme.
This webserver typically runs on the instructors ma-
chine, but students can easily download and install the
server on their home/dorm PCs as well.

2 Related Work

The need for a simple, but powerful, language for teach-
ing introductory CS courses (CS0 or CS1) has been dis-
cussed recently by Roberts [5] who argues for a new
language, Minijava, that provides both a simpler com-
puting model (e.g. no inner classes, use of wrapper class
for all scalar values, optional exception throwing) and
a simpler runtime environment (e.g. a read-eval-print
loop is provided). Jscheme can be viewed as an even
more radical simplification of Java in that it replaces
the syntax of Java with the syntax of Scheme (matching
parentheses and quotes is the only syntactic restriction)
while maintaining access to all of the classes and objects
of Java.

Another recent approach to CS0 courses is to use
Javascript to both teach programming concepts and to

www.manaraa.com

SYNTACTIC CONSTRUCT
"." at the end

at the beginning
at beginning, "$" at end instance field
"." only in the middle

JAVA MEMBER
constructor

EXAMPLE

(Font. NAME STYLE SIZE)

(.setFont COMP FONT)

(.first$ ’ (1 2))

(Math.round 123.456)

Font.class

Font .BOLD$
java.awt.geom.Point2D$Double.class
packageless class $ParseDemo.class

instance member

static member
Java class
static field
inner class

.class" suffix
||$|| at end no "."
"$" in the middle

"$" at the beginning

at beg.

Figure 1: Java reflectors in Jscheme

provide a vehicle for discussing other aspects of comput-
ing such as the internet and web technology. For exam-
ple, David Reed proposes teaching a CS0 course [6] in
which about 15% of class time is devoted to HTML, 50%
to Javascript, and 35% to other topics in computer sci-
ence. The Jscheme approach allows for a similar break-
down but in addition allows the students to also build
servlets, applets, and GUI-based applications.

A third related approach is to teach Scheme directly as a
first course. This MIT approach, pioneered by Abelson
and Sussman [1], is not however suitable for non-science
majors as it requires a mathematically sophisticated au-
dience. A gentler introduction to Scheme[4] has recently
been proposed as a CSO course which is appropriate
(and in fact important) for students in all disciplines.
Unfortunately, by attempting to teach the full Scheme
language in an introductory course, little time is left
for other topics (e.g. computer architecture, chip de-
sign, internet programming, ethical and legal issues in
computing). In the Jscheme approach we provide an in-
troduction to only a subset of the language (introducing
lists only toward the end) and we introduce some high-
level declarative libraries for teaching an event-driven
model of GUI construction.

3 Jscheme

Jscheme is an interpreter for Scheme implemented in
Java. It is almost completely compliant with the R4RS
standard ! and also provides full access to Java using
the Java Reflector syntax shown in Figure 1. Jscheme
also provides access to thread and exception handling.

The CS2a class makes use of a small but powerful subset
of Jscheme and also relies on a few selected Java reflec-
tors and a small GUI-building library. For control flow
and abstraction it uses define, set!, lambda, if,
cond, case, let*. For primitives, it uses arithmetic
operations and comparisons, a simple GUI-building li-
brary (providing declarative access to Swing compo-
nents, events, and layout managers).

!strings are not mutable, and call/cc is only implemented
for try/catch like applications

4 SXML

Jscheme also provides an optional syntactic exten-
sion to simplify the generation of HTML. The mo-
tivating problem is that when generating HTML
in Scheme one must quote the double quotes,
e.g. (define a "c<\a>") and if one
wants to mix static and generated HTML, a nested se-
quence of ”string-append” expressions must be used.
We simplify the first problem by introducing a new
method for quoting strings: <xml> </xml>
which simply creates a string out of the text between
the open and close xml tags (including any quotation
marks that may appear there).

In addition, we allow one to escape to Scheme inside
the tags using an <scheme> </scheme> element.
The expressions inside that element are evaluated in
Scheme and converted to strings which are then ap-
pended into the current string. This is similar to the
quasiquote/unquote-splicing syntax used to construct
expressions in Scheme.

We can illustrate these ideas using the following sim-
ple Scheme servlet which generates a webpage with the
current Date.

<xml>
<html>
<head><title>Date/Time</title></head>
<body>
Current local time is
<scheme>(java.util.Date.)</scheme>
</body>
</html>
</xml>

Evaluating this expression yields

<html>
<head><title>Date/Time</title></head>
<body>
Current local time is
Fri Sep 07 09:33:30 EDT 2001
</body>
</html>

www.manaraa.com

The Jscheme webapp in the Jakarata Tomcat servlet
has been designed so that any file with the extension
7.sxml” is viewed as a Jscheme program.

That program is then evaluated in an environment
that contains three Java servlet variables: request,
response, httpservlet, and the resulting (HTML)
string is then sent back to the client that requested that

page.

This allows one to easily write servlets that process
form data from webpages. For example, after a week of
HTML instruction we have found that beginning stu-
dents are easily able to create forms such as the follow-
ing:

<html><head><title>SXML Demo</title></head>
<body>
<form method=post action="demol.sxml">
name <input type=text name=name><p>
age <input type=text name=age><p>
color <input type=text name=color><p>
<input type=submit>
</form>
</body></html>

The next step is to write a servlet that processes this
data. In the following example, we get the age and color
supplied by the user on the previous form and use them
to set the background color of the page and compute
the person’s age in millions of seconds.

(let ((age (.getParameter request "age"))
(color (.getParameter request "color")))
<xml>
<html><head><title>SXML Demo</title></head>
<body bgcolor=
<scheme>color</scheme>
>
Hello, if you are
<scheme>age</scheme>
years old,<p> then you are
<scheme>

(* (Double. age) 365.25 24 60 60 0.000001)

</scheme>
million seconds old.
Try another?
</body></html>
</xml>

)

For students to be able to write this type of servlet they
need to learn to use prefix Scheme arithmetic expres-
sions and to use the boilerplate let expression for read-
ing parameters. We have also added a few additional
primitives for reading/writing/appending scheme terms
to a file. This allows students to implement counters
and log files. For motivated students, there is also a
simple SQL library for accessing network databases.

41 SNLP

Jscheme has also been extended to allow students
to learn to implement simple programs employing a
Graphical User Interface. We have written a library
that provides declarative access to the Swing (or just
the AWT) package. An example of a simple Scheme
program using this library is shown below. Due to the
declarative nature of the library, this should be fairly
easy to understand without any explanation.

"John Doe"

"http://www.johndoe.com"

"years->secs calculator"

"Convert age in years to age in seconds"
"http://www. johndoe.com/jd.gif"

(jlib.Swing.load)
(define t (maketagger))
(define w (window "years->secs"
(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide w))))))
(border
nort abe ears->Seconds Calculator
(h (label "Y S ds Calcul "
(HelveticaBold 60)))
(center
(table 3 2
(label "Years:")
(t "years" (textfield "" 20))

(label "Seconds:")
(t "secs" (label ""))

(button "Compute" (action(lambda(e)
(writeexpr (t "secs")
(x 365.25 24 60 60
(readexpr (t "years"))))))))))))
(.pack w)
(.show w)

The key points about this windowing library are that it
provides procedures for each of the main GUI widgets
(window, button, menubar, label) and it also provides
procedures for specifying layouts (e.g. border, center,
row, col, table). The first few arguments of these pro-
cedures are mandatory (e.g. window must have a string
argument, textfield requires a string and a integer num-
ber of columns). The remaining arguments are optional
and can appear in any order. Examples are fonts, back-
ground colors, and actions. We also introduce the idea
of a "tagger” procedure which allows one to give names
to components — (t NAME 0BJ) assigns the NAME to
the OBJ and (t NAME) looks up the OBJ with that
NAME. Also, several of the GUI widgets (textfield,
textarea, label, choice, ...) are viewed as I/O objects

www.manaraa.com

and the "readexpr” and ”writeexpr” procedures can be
used to read/change their displayed values.

The first five lines of the program listed above are
strings that provide documentation about this program.
If this code is placed in a file with the extension ”.snlp”
in the Jscheme webapp of the Tomcat webserver, then
it is converted into an XML file using the Java Net-
work Launching Protocol (JNLP), and this causes the
program to be downloaded to the client’s computer and
run in a sandbox.

5 Experience

We have used Jscheme and its predecessors to teach
a large Introduction to Computers course for the past
five years. The classes have ranged in size from 150-250
students whose majors are evenly distributed across the
liberal arts departments.

We have used several techniques to accommodate the
non-science students that are a majority in this class.
The homework assignments allow students to exercise
their creativity in creating a web artifact (webpage,
servlet, applet, application) which must meet some gen-
eral criteria. For example, in one assignment they are
required to create a servlet that uses several specific
form tags (in HTML) and generates a webpage in which
some arithmetic computation is performed. This en-
courages a bricolage approach to learning programming
concepts which seems to appeal to non-science majors.
The course features weekly quizzes which take an oppo-
site approach. The students are shown a simple web ar-
tifact and asked to write the code for it during a twenty
minute in-class exam. This practice helps keep the stu-
dents from falling behind in the class and also helps
counterbalance the openness of the homework assign-
ments. The final exam is based on the weekly quizzes
so they also serve a role in preparing students for the
exam. The course provides a high level of teaching as-
sistant support and uses peers who have completed the
course in a previous year. The students post their home-
work assignments on the web and are thereby able to
learn from each other, while the creativity requirement
keeps copying to a minimum.

6 Conclusions/Future Work

Overall the most surprising aspect of the course is that
these non-science students have been able to learn how
to write HTML, servlets, applets, and applications all
within an 8 week unit of a 13 week semester. The pri-
mary reasons for the success of this approach seems to
be two-fold:

e by using a subset of Scheme we eliminate the problem
of learning syntax (assone-mustzonly match parens

and quotes and the Jscheme IDEs help one do this)
and also minimize the problem of learning the under-
lying abstract machine due to the declarative nature
of the language.

e by using a Scheme implemented in Java we are able to
easily embed Scheme in applets, servlets, and JNLP
applications and thereby allow the students to de-
velop web artifacts that are usually only accessible to
upper level Computer Science majors.

We have also found that Scheme also provides an ideal
vehicle for introducing key CS concepts such as formal
syntax and semantics (e.g. students are introduced to
the substitution model of Scheme and given quizzes in
which they must trace the evolution of a Scheme pro-
cess).

Another advantage of Jscheme is that it is quite easy
to implement declarative libraries providing access to
Java packages (e.g. the Swing library is only a few
pages of code, as is the code for implementing applets
and servlets, and for accessing databases, email, and file

1/0).

We are hoping to add peer-to-peer computing to the set
of applications that are covered in the course. This will
require developing a simple library for sending scheme
terms between applications, and would allow students
to build multi-person chats and simple internet games.
We are also experimenting with using this curriculum to
teach computer science concepts in a transitional year
program whose aim is to prepare high-potential students
from under-resourced school districts for admission to
Ivy League universities.

The Jscheme approach could still be improved. Many
of the non-science students find the process of writing a
program by themselves to be an isolating and frustrat-
ing experience. We are looking into introducing Pair
programming as a required part of the course and we
have been developing some peer-to-peer tools which will
allow student to get online support for Teaching Assis-
tants.

Acknowledgment

I would like to acknowledge the support of my Jscheme
codevelopers over the years, including Ken Anderson
and Peter Norvig, and my students Hao Xu, Lei Wang
who helped develop the very first version in 1997.

References

[1] H. Abelson and J. Sussman. Structure and Inter-
pretation of Computer Programs MIT Press.

[2] Ken Anderson, Timothy J. Hickey, Peter Norvig.
Silk: A playful combination of Scheme and Java

www.manaraa.com

Workshop on Scheme and Functional Programming
Rice University, CS Dept. Tech. Rep. 00-368, Sept
2000.

William Clinger and Jonathan Rees, editors.
“The revised* report on the algorithmic language
Scheme.” In ACM Lisp Pointers 4(3), pp. 1-55,
1991

Robert Bruce Findler, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. DrScheme: a pedagogic programming en-
vironment for Scheme. Proc. 1997 Symposium on
Programming Languages: Implementations, Log-
ics, and Programs, 1997.

Eric Roberts. An overview of MiniJava. in
SIGCSE’00 ACM Digital Library, 2000.

David Reed. Rethinking CSO with Javascript. in
SIGCSE’00 ACM Digital Library, 2000.

www.manharaa.com

